A Clostridium acetobutylicum regulator gene (regA) affecting amylase production in Bacillus subtilis.
نویسندگان
چکیده
Plasmid pMET7C containing a 6.05 kb DNA insert from Clostridium acetobutylicum P262 made Escherichia coli F19 cells sensitive to metronidazole. The nucleotide sequence of the C. acetobutylicum DNA controlling metronidazole sensitivity in E. coli F19 revealed an ORF of 972 bp which encoded a protein of 324 amino acids with a calculated Mr of 35,000. The amino acid sequence encoded by the ORF contained a helix-turn-helix DNA-binding domain and was homologous to the catabolite control protein, CcpA, from Bacillus subtilis and Bacillus megaterium, a tRNA repressor of E. coli encoded by the shl gene, and the GalR, Lacl and PurR repressors of E. coli. The C. acetobutylicum ORF, which was termed regA, complemented a B. subtilis ccpA mutant and an E. coli shl mutant, but was unable to complement E. coli galR, lacl or purR mutants. To determine whether the regA gene product was involved in the regulation of amylase gene expression in C. acetobutylicum, a starch-degrading enzyme gene (staA) from C. acetobutylicum NCIMB 8052 was cloned. The RegA protein inhibited the degradation of starch by the C. acetobutylicum staA gene product in E. coli.
منابع مشابه
Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum.
The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not...
متن کاملRibulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum.
The transcription factor AraR controls utilization of L-arabinose in Bacillus subtilis. In this study, we combined a comparative genomic reconstruction of AraR regulons in nine Clostridium species with detailed experimental characterization of AraR-mediated regulation in Clostridium acetobutylicum. Based on the reconstructed AraR regulons, a novel ribulokinase, AraK, present in all analyzed Clo...
متن کاملNon-Conserved Residues in Clostridium acetobutylicum tRNAAla Contribute to tRNA Tuning for Efficient Antitermination of the alaS T Box Riboswitch
The T box riboswitch regulates expression of amino acid-related genes in Gram-positive bacteria by monitoring the aminoacylation status of a specific tRNA, the binding of which affects the folding of the riboswitch into mutually exclusive terminator or antiterminator structures. Two main pairing interactions between the tRNA and the leader RNA have been demonstrated to be necessary, but not suf...
متن کاملStructural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105
Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the...
متن کاملEngineering alternative butanol production platforms in heterologous bacteria.
Alternative microbial hosts have been engineered as biocatalysts for butanol biosynthesis. The butanol synthetic pathway of Clostridium acetobutylicum was first re-constructed in Escherichia coli to establish a baseline for comparison to other hosts. Whereas polycistronic expression of the pathway genes resulted in the production of 34 mg/L butanol, individual expression of pathway genes elevat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 141 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1995